T TĂTRAMÎ DINITÎ DIN DIN MARIN ÎNNI ÎNDINÎ ÎNDIN ÎNDINÎ ÎNDINÎ ÎNDINÎ ÎNDINÎ ÎNDINÎ ÎNDINÎ ÎNDINÎ ÎNDINÎ ÎNDINÎ

Seat No.

HAJ-003-2015001

B. Sc. (Sem. V) (CBCS) Examination

May - 2023

Mathematics : Paper : M-05(A)

(Mathematical Analysis-1 & Abstract Algebra-1) (New Cousre)

> Faculty Code : 003 Subject Code : 2015001

Time : $2\frac{1}{2}$ / Total Marks : 70

Instruction : Attempt all questions.

1	(A)	Answer the following questions in short.	
		(1) Define Neighborhood.	
		(2) Give an example of a subset of metric space R which is not open and closed.	
		(3) Define Interior point.	
		(4) Define Dense Set	
	(B)	Attempt any one out of two.	2
		(1) Obtain border set of the subset (1, 3) of metric space R.	
		(2) Determine whether set $\{x \in R / x^2 - 4x + 4 = 0\}$ is open or closed set.	
	(C)	Attempt any one out of two.	3
		(1) State and prove principle of Housedorff's in metric space.	
		(2) Prove that the finite intersection of open sets of metric space is an open set.	
НΔ	1_003.	015001] 1 [Contd	1

HAJ-003-2015001 J

[Contd...

	(D)	Attempt any one out of two.		5
		(1)	Prove that closer set of any subset of a metric space is a closed set.	
		(2)	Let (X, d) be a metric space and $a \in X$ then prove that	
			$N(a, \delta)$ is an open set.	
2	(A)	Ans	wer the following questions in short.	4
		(1)	Define Upper Riemann sum	
		(2)	Define Finer partition	
		(3)	Define Riemann Integration	
		(4)	Define norm of a partition	
	(B)	Atte	empt any one out of two.	2
		(1)	If $f:[0, 1] \to R$, $f(x) = x$ and $P = \{0, 1/2, 1\}$ then find $U(P, f)$	
		(2)	Prove that every constant function is Riemann integrable.	
	(C)	Atte	empt any one out of two.	3
		(1)	If $f(x) = [x], x \in [0, 3]$ then show that $f \in R_{[0, 3]}$ and	
			find $\int_0^3 f(x) dx$, where [x] denote the greatest integer not greater than x	
		(2)	If <i>f</i> is continuous on $[a, b]$ then prove that <i>f</i> is Riemann Integral on $[a, b]$.	
	(D)	Atte	empt any one out of two.	5
	. ,	(1)	If f is monotonic on $[a, b]$ then prove that f is Riemann Integral on $[a, b]$.	
		(2)	State and prove necessary and sufficient condition for a bounded function f defined on $[a, b]$ to be R-integrable.	
3	(A)	Ans	wer the following questions in short.	4
		(1)	Define Integral function.	
		(2)	Define abelian group.	
		(3)	Define special linear group.	

2

(4) Define group.

HAJ-003-2015001]

[Contd...

(B) Attempt any one out of two.

(1) Convert
$$\lim_{x \to \infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2 - r^2}$$
 as definite integral.

- (2) Prove that identity element in a group is unique.
- (C) Attempt any one out of two.
 - (1) State and prove First mean value theorem of integral calculus.

(2) If (*G*, *) is a group then prove that $(a^*b)^{-1} = b^{-1} * a^{-1}$

(D) Attempt any one out of two.

(1) Prove that
$$\frac{\pi^3}{51} \le \int_0^{\pi} \frac{x^2}{10 + 7\cos x} dx \le \frac{\pi^3}{9}$$
.

(2) Show that $(Z_n, +_n)$ is a group, where $n \in N$.

- (1) Define symmetric group.
- (2) Define cyclic group.
- (3) Define centre of a group.
- (4) Define permutation
- (B) Attempt any one out of two.

(1) If
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}$$
, $\sigma \in S_5$ then find σ^{-1} .

(2) Check that permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 1 & 5 & 6 \end{pmatrix}$ is

even or odd.

- (C) Attempt any one out of two.
 - (1) Let $H \le G$ and $a, b \in G$ then prove that He = H and $a \in Ha$.
 - (2) If G is a group, then prove that o(a) / o(G); $\forall a \in G$.

HAJ-003-2015001]

3

5

2

3

[Contd...

3

- (D) Attempt any one out of two.
 - (1) State and prove Lagrange's theorem.
 - (2) Prove that the set A_n of all even permutations of

 $S_n (n \ge 2)$ is a subgroup of S_n of order $\frac{n!}{2}$.

- (1) Define Inner Automorphism
- (2) Define Normal subgroup
- (3) Define Simple group
- (4) Define Isomorphism
- (B) Attempt any one out of two.
 - (1) If a finite group G has only one subgroup H of given order, then prove H is a normal subgroup of G.
 - (2) Let *G* be a group and let $H = \{a^2 | a \in G\} \le G$. Then show that *H* is a normal subgroup of *G*.
- (C) Attempt any one out of two.
 - (1) Prove that a subgroup of index 2 in a group is a normal subgroup.
 - (2) A subgroup *H* of a group *G* is a normal subgroup of $G \Leftrightarrow aHa^{-1} \subset H; \forall a \in G.$
- (D) Attempt any one out of two.
 - (1) State and prove Cayle's theorm.
 - (2) Show that $(R_+, \bullet) \cong (R, +)$.

4

HAJ-003-2015001]

3

5

2